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A new numerical method is introduced for the solution of Poisson’s equation for the electrostatic potential
between arbitrarily shaped boundary surfaces that may appear in metal-molecule-metal junctions. This method
is based on a straightforward procedure in which the arbitrarily shaped system is embedded in a cubic box.
The embedding procedure is formulated in terms of boundary operators that can be readily implemented
even for complex irregular geometries of the boundary surfaces. The solution to Poisson’s equation on a
cubic mesh (i.e., the inverse Laplacian operation) is used as a preconditioner, and the solution of the noncubic,
more complex electrostatic problem is obtained by an error-minimization scheme that is based on a Krylov
subspace expansion method. The accuracy and fast convergence of this numerical procedure are demonstrated
for generic examples.

1. Introduction

The recent experimental measurements of electron transport
through (single) molecules between two electrodes (a molecular
junction) under an electrostatic potential bias1-8 introduce new
challenges to quantum chemical calculations and to quantum
dynamics simulations. The main difficulty in the theoretical
modeling of a molecular junction is associated with the unique
boundary conditions due to the (strong) coupling of the molecule
to the continuum of states in the metal electrodes. Under these
conditions, the many-body system is open, and neither periodic
boundary conditions nor reflecting boundary conditions (as
applied in basis set expansions) are rigorously appropriate. It
is therefore common to focus on the molecule under study
(perhaps with a few additional metal atoms) and to apply
boundary conditions that introduce the effect of the “external”
metal electrodes.9-16 The latter are typically at different
electrostatic potentials, and their shape can be quite general.

The charge distributionF(x, y, z) inside a junction is related
to the electrostatic potentialΦ(x, y, z) by the Poisson equation,

When all of the charges in the system (including electrons and
nuclei (or atomic cores)) are treated explicitly, the solution to
the Poisson equation is the well-known Coulomb integral,

In fact, numerical solutions of Poisson’s equation provide an
efficient tool for evaluating such Coulomb integrals in quantum
chemistry applications.17 However, the charges in the semi-
infinite metal electrodes cannot be accounted for explicitly.
Rather, they impose the appropriate boundary conditions on the
open molecular junctions, particularly the externally applied
voltage bias.18-23 It is therefore anticipated that the solution of

Poisson’s equation for general boundary surfaces (in terms of
their shape and electrostatic potential) would become useful in
the study of electronic transport in molecular junctions. Moti-
vated by this ongoing development, we introduce in this paper
a new numerical approach for the solution of the relevant
electrostatic boundary value problem.

The numerical solution of Poisson’s equation on regular
domains (i.e., rectanglar in 2D and cubic in 3D) is well known,
and numerous algorithms exist for its solution. Fast direct
solvers24,25employing Fourier transform26,27and cyclic reduction
methods28,29are some examples. However, their generalization
to irregular domains of a general boundary shape, as in our cases
of interest, is not straightforward. There are basically two
approaches to this problem.30

One approach is to subdivide the irregular region into smaller
regions of regular shapes and then apply a domain decomposi-
tion solver to the whole system of subdomains. This would be
the method of choice when applied to an ensemble of objects
with natural boundaries. However, the implementation involves
several stages (i.e., separate discretizations in terms of finite
difference31 or finite element32 methods, a multigrid solver,33 a
domain decomposition algorithm,34 and a Krylov subspace
accelerator35,36).

The other option, which is more appropriate in the present
cases of interest where there are no natural subboundaries, is
to embed the irregular region inside a regular (e.g., cubic) region
for which the solution is found directly as above. In this
approach, the values of the electrostatic potential on the irregular
boundaries are replaced with equivalent charge distributions (the
irregular boundaries are internal to the domain) using the
capacitance matrix method.37,38However, the method becomes
computationally intensive as the number of grid points on the
irregular boundaries grows. A more recently suggested method
for this problem is the boundary integral method.39

In this work, we propose a novel embedding method that is
much simpler to implement and works efficiently in practice
on general irregular domains. Our strategy is to incorporate the
boundary conditions as additions to the Laplacian operator
(matrix) and then use the direct solver on the regular domain
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∆̂Φ(x, y, z) ) -4πF(x, y, z) (1.1)

Φ(x, y, z) ) ∫∫∫ F(x′, y′, z′) dx′ dy′ dz

x(x - x′)2 + (y - y′)2 + (z - z′)2
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as a preconditioner. To accelerate (and ensure) convergence,
we employ a Krylov subspace solver such as the quasiminimal
residual (QMR) algorithm.40-42 Thus, the method amounts to
the use of a separable preconditioner within a Krylov subspace
accelerator. Separable preconditioners that are based on the
inverse of a separable differential operator (the Laplacian on a
rectangular mesh, in the present case) with periodic boundary
conditions were suggested before43-51 in iterative solutions of
the inhomogeneous Schro¨dinger and Helmholtz equations. For
the Poisson equation, it was recently demonstrated that the same
numerical approach can be applied when the asymptotic solution
(i.e., the electrostatic potential) can be approximated analytically,
such as for a solute in a nonuniform dielectric medium.52

In the following section, we reformulate the Poisson equation
with specific boundary surfaces as an inhomogeneous linear
system in a 3D cubic domain using boundary operators. The
preconditioner is introduced in section 3, and numerical
examples in which the electrostatic potential is calculated for
generic illustrative models are reported in section 4. Concluding
remarks and a discussion are given in section 5.

2. Poisson Equation with Boundary Operators

We consider the Poisson equation (eq 1.1) in three dimen-
sions, whereF(x, y, z) is a given electric charge density. We
assume that the electrostatic potentialΦ(x, y, z) is defined at
some boundary surfaces, surrounding a volume in which it is
unknown. Focusing on electrode-conductor-electrode systems
as illustrated in Figure 1, two boundary surfaces representing
the electrodes are characterized by known constant values of
the electrostatic potentials. Let us define the axis in the
perpendicular direction to the two electrode surfaces as thez
axis. The boundary conditions are therefore

where zR(x, y) and zL(x, y) are the right and left boundary
surfaces, respectively, and the corresponding electrostatic
potentials areΦR[x, y, zR(x, y)] and ΦL[x, y, zL(x, y)].

Our purpose here is to reformulate the Poisson equation such
that the boundary conditions will be imposed explicitly on the
solution within a cubic (regular) box. To achieve that, we

introduce appropriate changes to the right-hand side of the
equation as well as to the differential operator. We rewrite eq
1.1 as follows:

The right-hand function includes the charge distribution as well
as boundary terms (in the present case,two boundary surfaces):

The termsbR(x, y, z) andbL(x, y, z) represent the electrodes. In
agreement with eq 1.1, they vanish in the volume between the
electrodes. At the boundaries, they are taken to be equal to the
corresponding boundary electrostatic potentials (eq 2.1), and
in the interior volume of each electrode (i.e., forz > zR(x, y) or
z < zL(x, y)), they can be assigned arbitrary values because the
physically relevant solution between the electrodes is uniquely
defined by the charge distribution and by the electrostatic
potential at the boundaries. These interior volumes of the
electrodes are artificially embedded in a cubic grid. The
boundary terms are therefore defined as

whereh(x, y, z) is a step function along thez direction:

The corresponding addition to the differential operator in eq
2.2 is introduced to impose the boundary values explicitly on
the solution. Formally, we define the boundary operatorB̂ as

Substituting eqs 2.3-2.6 into eq 2.2 results in an inhomogeneous
equation that is identical to eq 1.1 for the interior points between
the electrodes and explicitly imposes the appropriate electrostatic
potentials at the boundaries.

The left-hand operator,B̂ + ∆̂, in the inhomogeneous eq 2.2
is sparse in a spatially discrete grid representation, as explained
below. Therefore, the equation is suitable for an iterative solution
using Krylov subspace-based methods. The operator can be
divided into three terms. The first is the Laplacian operator,∆̂
) ∇x

2 + ∇y
2 + ∇z

2, which is separable in the three coordinates;
therefore, its discrete matrix representation is sparse even when
high-order finite difference methods are applied.49 (For N grid
points in each spatial dimension, the size of the matrix is (N3)2,
but there are at most 3N4 nonzero entries.) The second term
(eq 2.6) is [h(x, y, z - zR(x, y)) + 1 - h(x, y, z - zL(x, y))] Î,
which is diagonal in the spatial grid representation. The third
term, [h(x, y, z - zR(x, y)) + 1 - h(x, y, z - zL(x, y))]∆̂, is a
sequence (a successive operation) of the sparse Laplacian matrix
and the diagonal matrix. The approximate solution (of orderk)
to eq 2.2 in a Krylov subspace,Kk+1(B̂ + ∆̂, b), reads

where the expansion coefficients{Rl} can be optimized by an
appropriate error-minimization criterion. It is important to point
out that the matrix representation of the left-hand operatorB̂ +
∆̂ in eq 2.2 is a real nonsymmetric matrix; therefore, the

Figure 1. Schematic illustration of the charge distributionF between
two electrode surfaces.

Φ[x, y, zR(x, y)] ) ΦR[x, y, zR(x, y)]

Φ[x, y, zL(x, y)] ) ΦL[x, y, zL(x, y)] (2.1)

[∆̂ + B̂]Φ(x, y, z) ) b(x, y, z) (2.2)

b(x, y, z) ) -4πF(x, y, z) + bR(x, y, z) + bL(x, y, z) (2.3)

bR(x, y, z) ) h(x, y, z - zR(x, y))ΦR(x, y, z) (2.4a)

bL(x, y, z) ) [1 - h(x, y, z - zL(x, y))]ΦL(x, y, z) (2.4b)

h(x, y, z) ) {1 z g 0
0 z < 0

(2.5)

B̂ ) [h(x, y, z - zR(x, y)) + 1 - h(x, y, z - zL(x, y))][ Î - ∆̂]
(2.6)

Φk(x, y, z) ) ∑
l)0

k

Rl[B̂ + ∆̂] lb(x, y, z) (2.7)
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resulting linear system is non-Hermitian. An appropriate
residual-minimization algorithm for such systems is the transpose-
free quasi-minimal residual (TFQMR) algorithm of Freund and
Nachtigal.40-42

3. Separable Preconditioner

A crucial step in our scheme is the choice of an appropriate
preconditioner. A useful approach is to apply an approximate
inverse of the differential operator as a preconditioner. In some
recent applications,43-49 the separable part of the differential
operator was chosen for this purpose. Here we use the
separability of the Laplacian on the cubic mesh and apply the
same strategy. Consider a separable differential operator,Ŝ, in
a 3D coordinate space,(x, y, z), such thatŜ ≡ Ŝx + Ŝy + Ŝz.
Although the matrix representation ofŜis sparse in any spatially
discrete grid representation, the inverse matrix is not sparse.
However, the inverse matrix can be applied as a sequence of
sparse matrix multiplications using the diagonalization trans-
formationS-1 ) Uλ-1U-1. U is a sequence of sparse matrices
for any separableŜbecauseU ) Ux X Uy X Uz whereSxUx )
Uxλx, SyUy ) Uyλy, and SzUz ) Uzλz. λ is a diagonal matrix
whose elements are given byλ ) λx X Iy X Iz + Ix X λy X Iz +
Ix X Iy X λz.

In the present case, the preconditioner is the inverse of the
Laplacian operator,∆̂ ) ∇x

2 + ∇y
2 + ∇z

2. Invoking periodic
boundary conditions on the rectangular mesh, the eigenvector
matrix transformationU ) Ux X Uy X Uz amounts to the 3D
Fourier transform (the Fourier grid preconditioner43). (Recently,
a similar approach was applied in solving the Poison equation
in a nonuniform dielectric medium,52 which was reformulated
as a Helmholtz equation with an analytically approximated
asymptotic potential.) The spectrum of the Laplacian operator
includes the zero eigenvalue. This singularity can be easily
removed by shifting the operator by an appropriate scalar
constant43 so that eq 2.2 can be rewritten as

Applying the inverse of [∆̂ + c] to both sides of eq 3.1, we
obtain the preconditioned linear system

By analogy to eq 2.7, the approximate solution can be expanded
in the corresponding Krylov subspace,Kk + 1([ Î + (∆̂ + c)-1(B̂
- c)], (∆̂ + c) - 1b), as follows:

The coefficients{âl} are optimized by an error-minimization
scheme.

4. Numerical Implementation

In the examples below, we demonstrate calculations of the
electrostatic potential for model systems in which charge points
are positioned between two surfaces at constant electrostatic
potentials. Two cases are considered. In the first case, the metal
plates are taken to be flat and parallel to each other. In this
case, the electrostatic potential can be calculated analytically
in terms of an infinite summation over image charges potentials,
which represent the metallic surfaces.53 This calculation can

therefore be used to analyze the accuracy and convergence
properties of the proposed solver. In the second calculation, we
consider nonflat tip-shaped electrodes.

The systems were modeled in a cubic box in which the
Cartesian coordinates were discretized on an equally spaced
mesh defined as

The numerical values of these grid parameters for the different
calculations are summarized in Table 1. The inverse Laplacian
operator was applied as a preconditioner using the discrete
Fourier transform

where the operationF was implemented using the fast Fourier
transform (FFT) algorithm with a complexity ofO(N log(N))
operation (N ) NxNyNz) andλ is the diagonal eigenvalues matrix,
whose nonzero elements are

for i ) 1, 2, ...,Nx; j ) 1, 2, ...,Ny; andk ) 1, 2, ,..,Nz.
In the first model, the two boundary surfaces representing

the electrodes (eq 2.1) were taken to be parallel and flat:

The distance between the electrodes was taken to beZ0 ) 5.4
au, and the electrostatic potential at the two electrodes was taken
to be zero:

In the lateral directions (x andy), periodic boundary conditions
were applied, corresponding to periodic replications of the
charges, where the four nearest neighbors of each charge are
positioned at distances of(∆xNx in thex direction and(∆yNy

in they direction. Choosing the lateral boundaries of the cubic
box sufficiently far from the charges ensures that the periodic
model closely approximates the model of a single charge
distribution. We emphasize that the problem of flat parallel
electrodes is particularly simple because it has a formal analytic
solution. The proposed numerical method was applied for this
test case to demonstrate its feasibility. The system was embed-
ded in a box, which is larger than the volume between the
electrodes, and parts of the two electrodes were included
explicitly in the model in terms of the boundary operators.

[∆̂ + c - c + B̂]Φ(x, y, z) ) b(x, y, z) (3.1)

[ Î + (∆̂ + c)-1(B̂ - c)]Φ(x, y, z) ) [∆̂ + c]-1b(x, y, z)
(3.2)

Φ(k)(x, y, z) )

∑
l ) 0

k

âl[ Î + (∆̂ + c)-1(B̂ - c)] l[∆̂ + c]-1b(x, y, z) (3.3)

TABLE 1: Numerical Grid Parameters a

∆x ∆y ∆z Nx Ny Nz

Figure 2 0.1 0.1 0.035 100 100 160
Figure 3 0.1 0.1 0.035 40, 60, 100 40, 60, 100 160
Figure 4 0.2 0.2 0.2 60 60 100
Figure 5 0.2 0.2 0.2 60 60 100
Figure 6 0.2 0.2 0.2 60 60 100

a Distances are in au.

xi ) x0 + (i - 1)∆x i ) 1, 2, ...,Nx (4.1.a)

yj ) y0 + (j - 1)∆y j ) 1, 2, ...,Ny (4.1.b)

zk ) z0 + (k - 1)∆z k ) 1, 2, ...,Nz (4.1.c)

[∆ + c]-1 ) F-1[c - λ]-1F (4.2)

λi,j,k ) [-Nxπ + 2π(i - 1)

Nx∆x
]2

+ [-Nyπ + 2π(j - 1)

Ny∆y
]2

+

[-Nzπ + 2π(k - 1)

Nz∆z
]2

(4.3)

zR(x, y) )
Z0

2
zL(x, y) ) -

Z0

2
(4.4)

ΦL[x, y, zL(x, y)] ) ΦR[x, y, zR(x, y)] ) 0 (4.5)
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In the first test case, three charges were positioned on grid
points between the electrodes. Two positive (proton) charges
were located at points (0, 0,-1.05) and (0, 0, 1.05) au, and a
negative (electron) charge was located at point (1, 1, 0). The
Poisson equation was solved according to eqs 3.2 and 3.3 using
the transpose-free quasi-minimal residual algorithm.40-42 The
numerical grid parameters are reported in Table 1. In Figure 2,
the solutionΦ(x, y, z) is plotted as a function ofz for various
sets of (x, y) values, illustrating the modulation of thez
dependence ofΦ(x, y, z) for different distances from the point
charges. The numerical values are compared to analytical results,
calculated by the method of images with the appropriate lateral
periodic boundary conditions. These results demonstrate the
accuracy of the numerical solution.

As a second test, we calculated the electrostatic potential for
a simplistic and yet generic model in which two static proton
charges were positioned between the two flat, ideal metallic
electrodes. The two charges were located at points (0, 0,-1.05)
and (0, 0, 1.05) au, and the plates were positioned as before at
z) (2.7 au. In Figure 3, numerically and analytically calculated
results are plotted. The plots illustrate thez dependence of the
electrostatic potential for fixed valuesx ) 0.5 andy ) 0.5 au.
The potential at each point was defined as the solution to
Poisson’s equation as a boundary value problem (eq 3.2) with
an additional point charge (taken to be a negative electron
charge) at that point, minus the singular term, associated with
the Coulomb potential at that point.22,53 The numerical value
of the singular term was defined as the difference between the

numerical solution of eq 3.2 and the analytical electrostatic
potential (obtained by the method of images) when the negative
charge was located at a specific reference point, (0.5, 0.5, 0).
In the numerical solution, artificial periodic boundary conditions
were applied in the lateral (x, y) directions, leading to deviations
of the numerical solution from the analytical one. However, as
the lateral box length increases (Figure 3), the error in the
numerical results decreases as expected. We emphasize here
that the electrostatic potential in Figure 3 is obtained for ideal
metals, whose response to the charges is described by the image
charges model. This model is valid only when the charges are
sufficiently far away from the metal.54-56

In the second model, the boundary surfaces were shaped as
two electrode tips pointing toward two positive point charges.
The boundary surfaces were defined as

with the following parameters:Z0 ) 8 au is the minimal
distance between the tips,W ) 5 au is the radius of the tip
base,Z1 ) 18 is the distance between the tip bases, andR )
0.03244 au is the tip curvature parameter. The boundary
electrostatic potentials were taken as

corresponding to an electrostatic potential bias of 5.44 eV
between the two electrodes. Two proton charges were located
at points (0, 0,-2) and (0, 0, 2) au on the grid. In the lateral
directions (x andy), periodic boundary conditions were applied
as in the first model. The numerical grid parameters are reported
in Table 1. In Figure 4 , contour plots of 2D sections through
the solution to Poisson’s equation are given for this system.
Some details of the convergence of the numerical solution are
given in Figure 5, where we follow the numerical error as the
iterative solution proceeds. The numerical error was defined as
the Euclidian norm of the residual vector,

and the numerical effort was measured in terms of the number
of operations of the left-hand operator in eq 3.3. For comparison,
we also plot in Figure 5 the convergence of the Krylov subspace
expansion for theoriginal linear system (eq 2.7). The significant
reduction in the number of iterations in the preconditioned
system (eq 3.3) is typical in this type of calculation, and it
justifies our strategy of combining a fast separable Poisson
solver for the cubic problem with an error-minimization scheme
to solve the equation on the irregular domain with noncubic
boundaries. The theoretical basis for the improved acceleration
of the solver when an approximate inverse is applied as a
preconditioner is commonly attributed to the clustering of the
spectrum around unity (e.g., the application of the Fourier grid
preconditioner in ref 43) and to the diminishing of the condition
number. Interestingly, however, we found that in the particular
example of Figure 5 improved convergence is obtained despite
an increase in the condition number of the preconditioned
system. A rigorous basis for the acceleration of the QMR
algorithm in this case, therefore, requires a more detailed
analysis of the spectral properties of the linear system.

Figure 2. Comparison between the numerical (O) and analytical (s)
solutions of Poisson’s equation for the charge distribution between two
flat electrodes. The different curves correspond to different choices of
fixed lateral (x, y) coordinates, [(-1, -1), (-0.8,-0.8), (-0.6,-0.6),
...., (0.8, 0.8), (1, 1)] all in au. The numerical grid parameters are given
in Table 1.

Figure 3. Electrostatic potential for a negative charge in a system of
two positive charges between two flat electrodes. The solid line is an
analytical result obtained by the method of images, and the long-dashed,
dashed, and dotted lines are numerical results obtained for different
values of lateral box lengthL. The numerical grid parameters are given
in Table 1.

zL(x, y) ) {xx2 + y2 e W; -
Z0

2
eR(x2+y2)

xx2 + y2 > W; -
Z1

2

(4.6a)

zR(x, y) ) -zL(x, y) (4.6b)

ΦL[x, y, zL(x, y)] ) 0 ΦR[x, y, zR(x, y)] ) 0.2 au (4.7)

R(k) ) [∆̂ + B̂]Φ(k) - b (4.8)
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Finally, the electrostatic potential was calculated for a
negative point charge in the setup of the second model. As in
the first model, the metals were considered to be ideal
(macroscopic) surfaces. In Figure 6 , thez dependence of the
electrostatic potential is plotted for fixed valuesx ) 0 andy )
0 au (i.e., along the axis that passes through the positive
charges). The electrostatic potential at each point was obtained
as above by solving the Poisson equation numerically with the
appropriate tip-shaped boundary surfaces and with an additional
negative point charge. The procedure for the subtraction of the

singular term from the solution of Poisson’s equation at the
location of the negative point charge was adopted from ref 22
(i.e., the numerical singularity at a grid point was defined in a
reference electrostatic problem of two flat electrodes, as in the
discussion of Figure 3). The plot in Figure 6 demonstrates the
singularities associated with the positive charges as well as an
attraction toward the ideal metal surfaces.

5. Discussion and Conclusions

In conclusion, we have introduced a fast iterative Poisson
solver for a general class of electrostatic boundary value
problems on irregular, noncubic grids, which may appear in
molecular junctions’ geometries. We have demonstrated that
the strategy of embedding the system in a cubic mesh with
appropriate boundary operators is quite accurate; its convergence
is fast, but mainly, its implementation is straightforward and
requires an efficient FFT and a Krylov subspace-based iterative
solver, which are commonly available. The price for this
simplicity of implementation is that the 3D grid is expanded to
contain the entire boundaries within a cubic box. However, a
detailed analysis of the efficiency of our embedding method,
in comparison to other more involved solvers such as domain
decomposition, is beyond the scope of the present work. For
the physical problem considered here (i.e., a charge distribution
between two electrodes) convergence was reached within a small
number of iterations even when the discretized equation was
represented on large grids for improved accuracy. Given that
the algorithm can be easily implemented on any complex region
and efficiently implemented on massively parallel machines,46,47,49

we anticipate that it is of valuable potential use.

Figure 4. Contour plots of the solution to the Poisson equation for
two point charges between two tips. The 2D sections in thex-z plane
correspond toy ) 0, 2.4, 4.8 au from top to bottom, respectively. The
dark areas are the corresponding sections through the tips.

Figure 5. Typical convergence plot. The dashed and the solid lines
correspond to solutions of the original (eq 2.2) and the preconditioned
(eq 3.2) systems (with a constant shift ofc ) 1 au), respectively. The
numerical error is defined according to eq 4.7 as the norm of the residual
vector, and the numerical effort is measured in the number of operations
of the left-hand operator in each equation.

Figure 6. Numerically calculated electrostatic potential for a negative
charge in a junction between two tips. Two positive charges are
positioned between the tips, and an external potential bias is applied.
The numerical grid parameters are given in Table 1.
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The use of the Fourier basis in the present applications
introduces the well-known effect of the Gibbs phenomenon at
the sharp boundary interfaces (due to the discontinuous first
derivative of the solution). Corrections for this problem were
recently suggested27 and can be implemented within the
framework of the present algorithm. Other more simple alterna-
tives for improved accuracy are the use of a more accurate
procedure for computing the residual within the Krylov subspace
accelerator.

Finally, we point out that the use of a plane wave (Fourier)
basis to represent the electrostatic potential makes the result
very convenient for accurate numerical integration with standard
quantum chemistry basis functions, such as Gaussians. We are
currently pursuing applications of the proposed Poisson solver
within quantum chemical calculations for constrained molecules
in metal-molecule-metal junctions.
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